Emulate Inc. presented data today that shows expanded functionality in modeling viral infection on the Small Airway Lung-Chip. This advancement opens new opportunities for studying viral-induced exacerbations of asthma using a human-relevant system. The data demonstrates the capability to model human airway tissue on the Small Airway Lung-Chip and to reproduce infection with a virus in vitro — recreating viral-induced exacerbation commonly experienced by asthma patients. The studies in the Small Airway Lung-Chip were carried out as part of a collaborative project between Emulate and Merck, known as MSD outside the United States and Canada.
The results of this collaborative research enable advanced human-relevant model systems that can lead to a better understanding of how viral infection worsens asthma symptoms, providing insights for developing new anti-inflammatory treatments, specifically for asthma. The research was presented at the American Thoracic Society annual meeting in Washington, DC, and showed:
• Recreation of airway tissue interfaces of the lung’s small airway, with differentiated mucociliary bronchiolar airway epithelium underlined by a microvascular endothelium which experiences fluid flow;
• Induction of a pro-inflammatory response characterized by cell death, goblet cells hyperplasia, and release of cytokines, when the Small Airway Lung-Chip was infected with human Rhinovirus (HRV), a leading cause of asthma exacerbation in children and adults;
• Effective modeling of molecular responses observed in severe asthma by showing altered interferon response and recruitment of circulating human neutrophils (immune cells);
• Pharmacological modulation of neutrophil recruitment by demonstrating that neutrophils, which drive innate inflammatory cell infiltration to the lungs in viral-induced asthma exacerbations, can be modulated by a selective CXCR2 antagonist drug agent.