Emulate, Inc., today announced that data on its Brain-on-Chip was presented by its collaborators at Cedars Sinai’s Board of Governors Regenerative Medicine Institute, who led the research and provided induced pluripotent stem (iPS) cells from patient samples to enable this new approach to model the human brain microenvironment. In the study, Emulate’s Brain-on-Chip demonstrated the physiologically-relevant modeling of the human brain’s microenvironment, including successful co-culture of human brain microvascular endothelial cells, neurons and astrocytes. The dynamic nature of the Brain-on-Chip facilitated the differentiation of iPS cells from patient samples into neurons, based on the creation of an appropriate microenvironment for growth and maturation of the brain cells. The findings from this collaborative research open up new applications for using Emulate’s Brain-on-Chip, in combination with patient-derived iPS cells from Cedars-Sinai, as a system to advance drug R&D in the field of neurodegenerative diseases and improve understanding of key mechanisms driving disease development. The data were presented at the Society for Neuroscience (SfN) 45th annual meeting taking place on October 17-21 in Chicago, Illinois.
The results achieved with the Brain-on-Chip using iPS cells define a novel system to assess the interactions between endothelial cells and neural tissue, forming the basis for new applications for disease-specific or patient-specific Organs-on-Chips using iPS cells derived from patients with neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) or Parkinson’s disease.
“The data we have presented at the Neuroscience meeting represents just the beginning of the powerful ways that Cedars’ iPS cells and Emulate’s Organs-on-Chips can be combined to revolutionize drug development and health. Neurodegenerative diseases are one example of an area we can help identify and speed up the development of new solutions for patients,” said Clive Svendsen, PhD, senior author of the study and Director of Cedars-Sinai’s Board of Governors Regenerative Medicine Institute.